If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-30-13y=0
a = 1; b = -13; c = -30;
Δ = b2-4ac
Δ = -132-4·1·(-30)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-17}{2*1}=\frac{-4}{2} =-2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+17}{2*1}=\frac{30}{2} =15 $
| 5x+13=17x-24 | | 16-3x=20-5x | | 11^n=39 | | -6x+4(5x+15)=-108 | | 180*(n-2)=1440n | | -4x-4(-4x+3)=108 | | 3(x+8)^2=83 | | (3x–4)(x–3)=8 | | -4x-4(-4x-14)=54 | | 3x-2(-2x-15)=79 | | C2+10c+24=0 | | 0.0.4x-0.9x=5.16 | | 78=-3x+3(3x+6) | | 1x+8=32 | | 4x−2−2x=x−5 | | -8(5+2y)=88 | | C=12.00+.07x | | -5(-15y-1)=2(7y-16)-y | | 2a^2-10=2a | | 10k-2÷3(9k+6)=4k-23 | | -(3x+5)-5=4(x+3)-5x | | x/12+12=21 | | x^2+7x+100=-10x-1 | | x/4-17=4 | | 6−x−3=4(x−2) | | -7=2(n+14)−13 | | 5^x2-15x=0 | | Xx.62=3 | | 6/j=-2 | | F(x)=15/2x-9 | | -16^2+60t+3=0 | | 10x(1/2x)(4)=40 |